2022 Selected Articles Image created with MidJourney (CC BY-NC 4.0)

  1. Aldeghi, M.; Coley, C. W. A Graph Representation of Molecular Ensembles for Polymer Property Prediction. Chem. Sci. 2022, 13 (35), 10486–10498. https://doi.org/10.1039/D2SC02839E.
  2. Chen, D.; Li, Y.; Li, X.; Hong, X.; Fan, X.; Savidge, T. Key Difference between Transition State Stabilization and Ground State Destabilization: Increasing Atomic Charge Densities before or during Enzyme–Substrate Binding. Chem. Sci. 2022, 13 (27), 8193–8202. https://doi.org/10.1039/D2SC01994A.
  3. Chérif, S. E.; Ghosh, A.; Chelli, S.; Dixon, I. M.; Kraiem, J.; Lakhdar, S. Merging Grubbs Second-Generation Catalyst with Photocatalysis Enables Z -Selective Metathesis of Olefins: Scope, Limitations, and Mechanism. Chem. Sci. 2022, 13 (41), 12065–12070. https://doi.org/10.1039/D2SC03961C.
  4. Chines, S.; Ehrt, C.; Potowski, M.; Biesenkamp, F.; Grützbach, L.; Brunner, S.; van den Broek, F.; Bali, S.; Ickstadt, K.; Brunschweiger, A. Navigating Chemical Reaction Space – Application to DNA-Encoded Chemistry. Chem. Sci. 2022, 13 (37), 11221–11231. https://doi.org/10.1039/D2SC02474H.
  5. Das, S. K.; Das, S.; Ghosh, S.; Roy, S.; Pareek, M.; Roy, B.; Sunoj, R. B.; Chattopadhyay, B. An Iron( ii )-Based Metalloradical System for Intramolecular Amination of C(Sp 2 )–H and C(Sp 3 )–H Bonds: Synthetic Applications and Mechanistic Studies. Chem. Sci. 2022, 13 (40), 11817–11828. https://doi.org/10.1039/D2SC03505G.
  6. del Corte, X.; Martínez de Marigorta, E.; Palacios, F.; Vicario, J.; Maestro, A. An Overview of the Applications of Chiral Phosphoric Acid Organocatalysts in Enantioselective Additions to CO and CN Bonds. Org. Chem. Front. 2022, 9 (22), 6331–6399. https://doi.org/10.1039/D2QO01209J.
  7. Duke, R.; Bhat, V.; Risko, C. Data Storage Architectures to Accelerate Chemical Discovery: Data Accessibility for Individual Laboratories and the Community. Chem. Sci. 2022, 13 (46), 13646–13656. https://doi.org/10.1039/D2SC05142G.
  8. Endo, T.; Sunada, K.; Sumida, H.; Kimura, Y. Origin of Low Melting Point of Ionic Liquids: Dominant Role of Entropy. Chem. Sci. 2022, 13 (25), 7560–7565. https://doi.org/10.1039/D2SC02342C.
  9. Gallarati, S.; van Gerwen, P.; Laplaza, R.; Vela, S.; Fabrizio, A.; Corminboeuf, C. OSCAR: An Extensive Repository of Chemically and Functionally Diverse Organocatalysts. Chem. Sci. 2022, 13 (46), 13782–13794. https://doi.org/10.1039/D2SC04251G.
  10. Gong, W.; Fu, D.; Zhong, K.; Ni, H.; He, X.; Shan, C.; Li, R.; Lan, Y. What Is the Difference between Mono- and Biphosphine Ligands? Revealing the Chemoselectivity in Pd-Catalysed Carbenation of Bromonaphthalene. Org. Chem. Front. 2022, 9 (18), 4916–4923. https://doi.org/10.1039/D2QO00910B.
  11. Griffiths, R.-R.; Greenfield, J. L.; Thawani, A. R.; Jamasb, A. R.; Moss, H. B.; Bourached, A.; Jones, P.; McCorkindale, W.; Aldrick, A. A.; Fuchter, M. J.; Lee, A. A. Data-Driven Discovery of Molecular Photoswitches with Multioutput Gaussian Processes. Chem. Sci. 2022, 13 (45), 13541–13551. https://doi.org/10.1039/D2SC04306H.
  12. Harden, I.; Neese, F.; Bistoni, G. An Induced-Fit Model for Asymmetric Organocatalytic Reactions: A Case Study of the Activation of Olefins via Chiral Brønsted Acid Catalysts. Chem. Sci. 2022, 13 (30), 8848–8859. https://doi.org/10.1039/D2SC02274E.
  13. Ippoliti, F. M.; Chari, J. V.; Garg, N. K. Advancing Global Chemical Education through Interactive Teaching Tools. Chem. Sci. 2022, 13 (20), 5790–5796. https://doi.org/10.1039/D2SC01881K.
  14. Kang, P.-L.; Shi, Y.-F.; Shang, C.; Liu, Z.-P. Artificial Intelligence Pathway Search to Resolve Catalytic Glycerol Hydrogenolysis Selectivity. Chem. Sci. 2022, 13 (27), 8148–8160. https://doi.org/10.1039/D2SC02107B.
  15. Karandikar, S. S.; Bhattacharjee, A.; Metze, B. E.; Javaly, N.; Valente, E. J.; McCormick, T. M.; Stuart, D. R. Orbital Analysis of Bonding in Diarylhalonium Salts and Relevance to Periodic Trends in Structure and Reactivity. Chem. Sci. 2022, 13 (22), 6532–6540. https://doi.org/10.1039/D2SC02332F.
  16. Komp, E.; Valleau, S. Low-Cost Prediction of Molecular and Transition State Partition Functions via Machine Learning. Chem. Sci. 2022, 13 (26), 7900–7906. https://doi.org/10.1039/D2SC01334G.
  17. Lauzon, S.; Ollevier, T. Fluorine in Metal-Catalyzed Asymmetric Transformations: The Lightest Halogen Causing a Massive Effect. Chem. Sci. 2022, 13 (37), 10985–11008. https://doi.org/10.1039/D2SC01096H.
  18. Lavigne, C.; Gomes, G.; Pollice, R.; Aspuru-Guzik, A. Guided Discovery of Chemical Reaction Pathways with Imposed Activation. Chem. Sci. 2022, 13 (46), 13857–13871. https://doi.org/10.1039/D2SC05135D.
  19. Lee, G. S.; Lee, H. W.; Lee, H. S.; Do, T.; Do, J.-L.; Lim, J.; Peterson, G. I.; Friščić, T.; Kim, J. G. Mechanochemical Ring-Opening Metathesis Polymerization: Development, Scope, and Mechano-Exclusive Polymer Synthesis. Chem. Sci. 2022, 13 (39), 11496–11505. https://doi.org/10.1039/D2SC02536A.
  20. Lee, S.; Ermanis, K.; Goodman, J. M. MolE8: Finding DFT Potential Energy Surface Minima Values from Force-Field Optimised Organic Molecules with New Machine Learning Representations. Chem. Sci. 2022, 13 (24), 7204–7214. https://doi.org/10.1039/D1SC06324C.
  21. Leroy, C.; Mittelette, S.; Félix, G.; Fabregue, N.; Špačková, J.; Gaveau, P.; Métro, T.-X.; Laurencin, D. Operando Acoustic Analysis: A Valuable Method for Investigating Reaction Mechanisms in Mechanochemistry. Chem. Sci. 2022, 13 (21), 6328–6334. https://doi.org/10.1039/D2SC01496C.
  22. Ma, P.; Plummer, C. M.; Luo, W.; Pang, J.; Chen, Y.; Li, L. Exhaustive Baeyer–Villiger Oxidation: A Tailor-Made Post-Polymerization Modification to Access Challenging Poly(Vinyl Acetate) Copolymers. Chem. Sci. 2022, 13 (40), 11746–11754. https://doi.org/10.1039/D2SC03492A.
  23. Matlin, S. A.; Cornell, S. E.; Krief, A.; Hopf, H.; Mehta, G. Chemistry Must Respond to the Crisis of Transgression of Planetary Boundaries. Chem. Sci. 2022, 13 (40), 11710–11720. https://doi.org/10.1039/D2SC03603G.
  24. McMillan, A. E.; Wu, W. W. X.; Nichols, P. L.; Wanner, B. M.; Bode, J. W. A Vending Machine for Drug-like Molecules – Automated Synthesis of Virtual Screening Hits. Chem. Sci. 2022, 13 (48), 14292–14299. https://doi.org/10.1039/D2SC05182F.
  25. Petroselli, M.; Bacchiocchi, C. Kinetic vs . Thermodynamic Control of β-Functionalized Cyclic Ketones: A Theoretical Investigation of Regioselective Formation of Enolates. Org. Chem. Front. 2022, 9 (22), 6205–6212. https://doi.org/10.1039/D2QO01343F.
  26. Quack, M.; Seyfang, G.; Wichmann, G. Perspectives on Parity Violation in Chiral Molecules: Theory, Spectroscopic Experiment and Biomolecular Homochirality. Chem. Sci. 2022, 13 (36), 10598–10643. https://doi.org/10.1039/D2SC01323A.
  27. Seeman, J. I.; Tantillo, D. J. Understanding Chemistry: From “Heuristic (Soft) Explanations and Reasoning by Analogy” to “Quantum Chemistry”. Chem. Sci. 2022, 13 (39), 11461–11486. https://doi.org/10.1039/D2SC02535C.
  28. Shim, E.; Kammeraad, J. A.; Xu, Z.; Tewari, A.; Cernak, T.; Zimmerman, P. M. Predicting Reaction Conditions from Limited Data through Active Transfer Learning. Chem. Sci. 2022, 13 (22), 6655–6668. https://doi.org/10.1039/D1SC06932B.
  29. Théry, V.; Molton, F.; Sirach, S.; Tillet, N.; Pécaut, J.; Tomás-Mendivil, E.; Martin, D. The Curious Case of a Sterically Crowded Stenhouse Salt. Chem. Sci. 2022, 13 (33), 9755–9760. https://doi.org/10.1039/D2SC01895K.
  30. Urner, L. H.; Ariamajd, A.; Weikum, A. Combinatorial Synthesis Enables Scalable Designer Detergents for Membrane Protein Studies. Chem. Sci. 2022, 13 (35), 10299–10307. https://doi.org/10.1039/D2SC03130B.
  31. Wang, W.; Liu, Y.; Wang, Z.; Hao, G.; Song, B. The Way to AI-Controlled Synthesis: How Far Do We Need to Go?. Chem. Sci. 2022, 13 (43), 12604–12615. https://doi.org/10.1039/D2SC04419F.
  32. Weberg, A. B.; Chaudhuri, S.; Cheisson, T.; Uruburo, C.; Lapsheva, E.; Pandey, P.; Gau, M. R.; Carroll, P. J.; Schatz, G. C.; Schelter, E. J. Tantalum, Easy as Pi: Understanding Differences in Metal–Imido Bonding towards Improving Ta/Nb Separations. Chem. Sci. 2022, 13 (23), 6796–6805. https://doi.org/10.1039/D2SC01926D.
  33. Zhang, X.; Zhou, S.; Leonik, F. M.; Wang, L.; Kuroda, D. G. Quantum Mechanical Effects in Acid–Base Chemistry. Chem. Sci. 2022, 13 (23), 6998–7006. https://doi.org/10.1039/D2SC01784A.
  34. Zhong, Z.; Song, J.; Feng, Z.; Liu, T.; Jia, L.; Yao, S.; Wu, M.; Hou, T.; Song, M. Root-Aligned SMILES: A Tight Representation for Chemical Reaction Prediction. Chem. Sci. 2022, 13 (31), 9023–9034. https://doi.org/10.1039/D2SC02763A.
  35. Zhou, C.; Hermes, M. R.; Wu, D.; Bao, J. J.; Pandharkar, R.; King, D. S.; Zhang, D.; Scott, T. R.; Lykhin, A. O.; Gagliardi, L.; Truhlar, D. G. Electronic Structure of Strongly Correlated Systems: Recent Developments in Multiconfiguration Pair-Density Functional Theory and Multiconfiguration Nonclassical-Energy Functional Theory. Chem. Sci. 2022, 13 (26), 7685–7706. https://doi.org/10.1039/D2SC01022D.
  36. Huang, H.-M.; Bellotti, P.; Glorius, F. Merging Carbonyl Addition with Photocatalysis. Acc. Chem. Res. 2022, 55 (8), 1135–1147. https://doi.org/10.1021/acs.accounts.1c00799.
  37. Lan, J.; Li, X.; Yang, Y.; Zhang, X.; Chung, L. W. New Insights and Predictions into Complex Homogeneous Reactions Enabled by Computational Chemistry in Synergy with Experiments: Isotopes and Mechanisms. Acc. Chem. Res. 2022, 55 (8), 1109–1123. https://doi.org/10.1021/acs.accounts.1c00774.
  38. Ali, C.; Blackmond, D. G.; Burés, J. Kinetic Rationalization of Nonlinear Effects in Asymmetric Catalytic Cascade Reactions under Curtin–Hammett Conditions. ACS Catal. 2022, 5776–5785. https://doi.org/10.1021/acscatal.2c00783.
  39. Lukin, S.; Germann, L. S.; Friščić, T.; Halasz, I. Toward Mechanistic Understanding of Mechanochemical Reactions Using Real-Time In Situ Monitoring. Acc. Chem. Res. 2022, 55 (9), 1262–1277. https://doi.org/10.1021/acs.accounts.2c00062.
  40. Mears, K. L.; Power, P. P. Beyond Steric Crowding: Dispersion Energy Donor Effects in Large Hydrocarbon Ligands. Acc. Chem. Res. 2022, 55 (9), 1337–1348. https://doi.org/10.1021/acs.accounts.2c00116.
  41. Xie, W.; Xu, J.; Chen, J.; Wang, H.; Hu, P. Achieving Theory–Experiment Parity for Activity and Selectivity in Heterogeneous Catalysis Using Microkinetic Modeling. Acc. Chem. Res. 2022, 55 (9), 1237–1248. https://doi.org/10.1021/acs.accounts.2c00058.
  42. Greer, E. M.; Siev, V.; Segal, A.; Greer, A.; Doubleday, C. Computational Evidence for Tunneling and a Hidden Intermediate in the Biosynthesis of Tetrahydrocannabinol. J. Am. Chem. Soc. 2022, 144 (17), 7646–7656. https://doi.org/10.1021/jacs.1c11981.
  43. Hao, W.; Joe, C. L.; Darù, A.; Ayers, S.; Ramirez, A.; Sandhu, B.; Daley, R. A.; Chen, J. S.; Schmidt, M. A.; Blackmond, D. G. Kinetic and Thermodynamic Considerations in the Rh-Catalyzed Enantioselective Hydrogenation of 2-Pyridyl-Substituted Alkenes. ACS Catal. 2022, 5961–5969. https://doi.org/10.1021/acscatal.2c00231.
  44. Baek, D.; Ryu, H.; Hahm, H.; Lee, J.; Hong, S. Palladium Catalysis Featuring Attractive Noncovalent Interactions Enabled Highly Enantioselective Access to β-Quaternary δ-Lactams. ACS Catal. 2022, 12 (9), 5559–5564. https://doi.org/10.1021/acscatal.2c00541.
  45. Delcaillau, T.; Schmitt, H. L.; Boehm, P.; Falk, E.; Morandi, B. Palladium-Catalyzed Carbothiolation of Alkenes and Alkynes for the Synthesis of Heterocycles. ACS Catal. 2022, 6081–6091. https://doi.org/10.1021/acscatal.2c01178.
  46. Jeong, D. Y.; Lee, D. S.; Lee, H. L.; Nah, S.; Lee, J. Y.; Cho, E. J.; You, Y. Evidence and Governing Factors of the Radical-Ion Photoredox Catalysis. ACS Catal. 2022, 6047–6059. https://doi.org/10.1021/acscatal.2c00763.
  47. Jian, J.; Hammink, R.; Tinnemans, P.; Bickelhaupt, F. M.; McKenzie, C. J.; Poater, J.; Mecinović, J. Probing Noncovalent Interactions in [3,3]Metaparacyclophanes. J. Org. Chem. 2022, 87 (9), 6087–6096. https://doi.org/10.1021/acs.joc.2c00350.
  48. Kaicharla, T.; Chinta, B. S.; Hoye, T. R. Examples Showing the Utility of Doping Experiments in 1 H NMR Analysis of Mixtures. J. Org. Chem. 2022, 87 (9), 5660–5667. https://doi.org/10.1021/acs.joc.1c03127.
  49. Kumar, M.; Verma, S.; Mishra, V.; Reiser, O.; Verma, A. K. Visible-Light-Accelerated Copper-Catalyzed [3 + 2] Cycloaddition of N -Tosylcyclopropylamines with Alkynes/Alkenes. J. Org. Chem. 2022, 87 (9), 6263–6272. https://doi.org/10.1021/acs.joc.2c00491.
  50. Laurence, C.; Mansour, S.; Vuluga, D.; Sraïdi, K.; Legros, J. Theoretical, Semiempirical, and Experimental Solvatochromic Comparison Methods for the Construction of the α 1 Scale of Hydrogen-Bond Donation of Solvents. J. Org. Chem. 2022, 87 (9), 6273–6287. https://doi.org/10.1021/acs.joc.2c00526.
  51. Lewis-Atwell, T.; Townsend, P. A.; Grayson, M. N. Comparing the Performances of Force Fields in Conformational Searching of Hydrogen-Bond-Donating Catalysts. J. Org. Chem. 2022, 87 (9), 5703–5712. https://doi.org/10.1021/acs.joc.2c00066.
  52. Mirena, J. I.; Redekop, E.; Poelman, H.; Srinath, N. V.; Constales, D.; Marin, G. B.; Yablonsky, G. S.; Gleaves, J. T.; Galvita, V. V. Shadowing Effect in Catalyst Activity: Experimental Observation. ACS Catal. 2022, 12 (9), 5455–5463. https://doi.org/10.1021/acscatal.2c00818.
  53. Zhang, G.; Zeng, H.; Zheng, S.; Neary, M. C.; Dub, P. A. Vanadium-Catalyzed Stereo- and Regioselective Hydroboration of Alkynes to Vinyl Boronates. ACS Catal. 2022, 12 (9), 5425–5429. https://doi.org/10.1021/acscatal.2c01318.
  54. Rahimi, R.; Shachar, A.; Bar, I. Experimental/Computational Study on the Impact of Fluorine on the Structure and Noncovalent Interactions in the Monohydrated Cluster of Ortho -Fluorinated 2-Phenylethylamine. J. Am. Chem. Soc. 2022, 144 (18), 8337–8346. https://doi.org/10.1021/jacs.2c02480.
  55. Yang, W.; Kalavalapalli, T. Y.; Krieger, A. M.; Khvorost, T. A.; Chernyshov, I. Yu.; Weber, M.; Uslamin, E. A.; Pidko, E. A.; Filonenko, G. A. Basic Promotors Impact Thermodynamics and Catalyst Speciation in Homogeneous Carbonyl Hydrogenation. J. Am. Chem. Soc. 2022, 144 (18), 8129–8137. https://doi.org/10.1021/jacs.2c00548.
  56. Kras, E. A.; Snyder, E. M.; Sokolow, G. E.; Morrow, J. R. Distinct Coordination Chemistry of Fe(III)-Based MRI Probes. Acc. Chem. Res. 2022, 55 (10), 1435–1444. https://doi.org/10.1021/acs.accounts.2c00102.
  57. El Bakouri, O.; Szczepanik, D. W.; Jorner, K.; Ayub, R.; Bultinck, P.; Solà, M.; Ottosson, H. Three-Dimensional Fully π-Conjugated Macrocycles: When 3D-Aromatic and When 2D-Aromatic-in-3D?. J. Am. Chem. Soc. 2022, 144 (19), 8560–8575. https://doi.org/10.1021/jacs.1c13478.
  58. Laplaza, R.; Sobez, J.-G.; Wodrich, M. D.; Reiher, M.; Corminboeuf, C. The (Not So) Simple Prediction of Enantioselectivity — A Pipeline for High-Fidelity Computations. Chem. Sci. 2022. https://doi.org/10.1039/D2SC01714H.
  59. Elser, I.; Schowner, R.; Stöhr, L.; Herz, K.; Benedikter, M. J.; Sen, S.; Frey, W.; Wang, D.; Buchmeiser, M. R. Isomers of Molybdenum Imido Alkylidene N-Heterocyclic Carbene Complexes. Organometallics 2022, 41 (10), 1232–1248. https://doi.org/10.1021/acs.organomet.2c00129.
  60. Gimferrer, M.; Joly, N.; Escayola, S.; Viñas, E.; Gaillard, S.; Solà, M.; Renaud, J.-L.; Salvador, P.; Poater, A. Knölker Iron Catalysts for Hydrogenation Revisited: A Nonspectator Solvent and Fine-Tuning. Organometallics 2022, 41 (10), 1204–1215. https://doi.org/10.1021/acs.organomet.2c00099.
  61. Groos, J.; Koy, M.; Musso, J.; Neuwirt, M.; Pham, T.; Hauser, P. M.; Frey, W.; Buchmeiser, M. R. Ligand Variations in Neutral and Cationic Molybdenum Alkylidyne NHC Catalysts. Organometallics 2022, 41 (10), 1167–1183. https://doi.org/10.1021/acs.organomet.2c00080.
  62. Lichtenberger, N.; Menche, M.; Rück, K. S. L.; Paciello, R.; Schäfer, A.; Comba, P.; Hashmi, A. S. K.; Schaub, T. Revisiting Nickel-Catalyzed Carbonylations: (Unexpected) Observation of Substrate-Dependent Mechanistic Differences. Organometallics 2022, 41 (10), 1184–1196. https://doi.org/10.1021/acs.organomet.2c00090.
  63. Pereira, A.; Albornoz, C.; Trofymchuk, O. S. Data-Driven Analysis of Reactions Catalyzed by [CoCp(CO)I 2 ]*. Organometallics 2022, 41 (10), 1158–1166. https://doi.org/10.1021/acs.organomet.2c00051.
  64. Brown, A. C.; Thompson, N. B.; Suess, D. L. M. Evidence for Low-Valent Electronic Configurations in Iron–Sulfur Clusters. J. Am. Chem. Soc. 2022, 144 (20), 9066–9073. https://doi.org/10.1021/jacs.2c01872.
  65. Gorbachev, V.; Tsybizova, A.; Miloglyadova, L.; Chen, P. Increasing Complexity in a Conformer Space Step-by-Step: Weighing London Dispersion against Cation−π Interactions. J. Am. Chem. Soc. 2022, 144 (20), 9007–9022. https://doi.org/10.1021/jacs.2c01381.
  66. Solà, M. Aromaticity Rules. Nat. Chem. 2022, 14 (6), 585–590. https://doi.org/10.1038/s41557-022-00961-w.
  67. Young, D. W.; Chamakuri, S. Trisubstituted Triumph. Nat. Chem. 2022, 14 (6), 595–597. https://doi.org/10.1038/s41557-022-00959-4.
  68. Liu, Y.; Zhou, C.; Jiang, M.; Arndtsen, B. A. Versatile Palladium-Catalyzed Approach to Acyl Fluorides and Carbonylations by Combining Visible Light- and Ligand-Driven Operations. J. Am. Chem. Soc. 2022, 144 (21), 9413–9420. https://doi.org/10.1021/jacs.2c01951.
  69. Fang, R.; Liu, K.; Kirillov, A. M.; Yang, L. DFT Rationalization of Gold(I)-Catalyzed Couplings between Alkynyl Thioether and Nitrenoid Derivatives: Mechanism, Selectivity Patterns, and Effects of Substituents. J. Org. Chem. 2022, 87 (11), 7193–7201. https://doi.org/10.1021/acs.joc.2c00407.
  70. Galland, N.; Laurence, C.; Le Questel, J.-Y. The p K BHX Hydrogen-Bond Basicity Scale: From Molecules to Anions. J. Org. Chem. 2022, 87 (11), 7264–7273. https://doi.org/10.1021/acs.joc.2c00469.
  71. Kriis, K.; Martõnov, H.; Miller, A.; Erkman, K.; Järving, I.; Kaasik, M.; Kanger, T. Multifunctional Catalysts in the Asymmetric Mannich Reaction of Malononitrile with N -Phosphinoylimines: Coactivation by Halogen Bonding versus Hydrogen Bonding. J. Org. Chem. 2022, 87 (11), 7422–7435. https://doi.org/10.1021/acs.joc.2c00674.
  72. Norman, J. P.; Larson, N. G.; Entz, E. D.; Neufeldt, S. R. Unconventional Site Selectivity in Palladium-Catalyzed Cross-Couplings of Dichloroheteroarenes under Ligand-Controlled and Ligand-Free Systems. J. Org. Chem. 2022, 87 (11), 7414–7421. https://doi.org/10.1021/acs.joc.2c00665.
  73. Pardo, I.; Bednar, D.; Calero, P.; Volke, D. C.; Damborský, J.; Nikel, P. I. A Nonconventional Archaeal Fluorinase Identified by In Silico Mining for Enhanced Fluorine Biocatalysis. ACS Catal. 2022, 12 (11), 6570–6577. https://doi.org/10.1021/acscatal.2c01184.
  74. Perrin, C. L. Malonic Anhydrides, Challenges from a Simple Structure. J. Org. Chem. 2022, 87 (11), 7006–7012. https://doi.org/10.1021/acs.joc.2c00453.
  75. Steinmann, S. N.; Michel, C. How to Gain Atomistic Insights on Reactions at the Water/Solid Interface?. ACS Catal. 2022, 12 (11), 6294–6301. https://doi.org/10.1021/acscatal.2c00594.
  76. Wahab, O. J.; Kang, M.; Daviddi, E.; Walker, M.; Unwin, P. R. Screening Surface Structure–Electrochemical Activity Relationships of Copper Electrodes under CO 2 Electroreduction Conditions. ACS Catal. 2022, 12 (11), 6578–6588. https://doi.org/10.1021/acscatal.2c01650.
  77. Sülzner, N.; Haberhauer, J.; Hättig, C.; Hellweg, A. Prediction of Acid p K a Values in the Solvent Acetone Based on COSMO‐RS. J Comput Chem 2022, 43 (15), 1011–1022. https://doi.org/10.1002/jcc.26864.
  78. Muravev, V.; Simons, J. F. M.; Parastaev, A.; Verheijen, M. A.; Struijs, J. J. C.; Kosinov, N.; Hensen, E. J. M. Cover Picture: Operando Spectroscopy Unveils the Catalytic Role of Different Palladium Oxidation States in CO Oxidation on Pd/CeO 2 Catalysts (Angew. Chem. Int. Ed. 23/2022). Angew Chem Int Ed 2022, 61 (23). https://doi.org/10.1002/anie.202206435.
  79. Qiao, L.; Rodriguez Peña, S.; Martínez-Ibañez, M.; Santiago, A.; Aldalur, I.; Lobato, E.; Sanchez-Diez, E.; Zhang, Y.; Manzano, H.; Zhu, H.; Forsyth, M.; Armand, M.; Carrasco, J.; Zhang, H. Anion π–π Stacking for Improved Lithium Transport in Polymer Electrolytes. J. Am. Chem. Soc. 2022, 144 (22), 9806–9816. https://doi.org/10.1021/jacs.2c02260.
  80. Zhu, Q.; Johal, J.; Widdowson, D. E.; Pang, Z.; Li, B.; Kane, C. M.; Kurlin, V.; Day, G. M.; Little, M. A.; Cooper, A. I. Analogy Powered by Prediction and Structural Invariants: Computationally Led Discovery of a Mesoporous Hydrogen-Bonded Organic Cage Crystal. J. Am. Chem. Soc. 2022, 144 (22), 9893–9901. https://doi.org/10.1021/jacs.2c02653.
  81. Jacobs, A.; Williams, D.; Hickey, K.; Patrick, N.; Williams, A. J.; Chalk, S.; McEwen, L.; Willighagen, E.; Walker, M.; Bolton, E.; Sinclair, G.; Sanford, A. CAS Common Chemistry in 2021: Expanding Access to Trusted Chemical Information for the Scientific Community. J. Chem. Inf. Model. 2022, 62 (11), 2737–2743. https://doi.org/10.1021/acs.jcim.2c00268.
  82. Ruggiu, F.; Bannan, C.; Bootsma, A. Early Career Perspectives from Large Pharma, Software, and Start-up Companies. J. Chem. Inf. Model. 2022, 62 (11), 2631–2638. https://doi.org/10.1021/acs.jcim.1c01416.
  83. Varet, A.; Prcovic, N.; Terrioux, C.; Hagebaum-Reignier, D.; Carissan, Y. BenzAI: A Program to Design Benzenoids with Defined Properties Using Constraint Programming. J. Chem. Inf. Model. 2022, 62 (11), 2811–2820. https://doi.org/10.1021/acs.jcim.2c00353.
  84. Boronat, M.; Climent, M. J.; Concepción, P.; Díaz, U.; García, H.; Iborra, S.; Leyva-Pérez, A.; Liu, L.; Martínez, A.; Martínez, C.; Moliner, M.; Pérez-Pariente, J.; Rey, F.; Sastre, E.; Serna, P.; Valencia, S. A Career in Catalysis: Avelino Corma. ACS Catal. 2022, 12 (12), 7054–7123. https://doi.org/10.1021/acscatal.2c01043.
  85. Ritacca, A. G.; Rovaletti, A.; Moro, G.; Cosentino, U.; Ryde, U.; Sicilia, E.; Greco, C. Unraveling the Reaction Mechanism of Mo/Cu CO Dehydrogenase Using QM/MM Calculations. ACS Catal. 2022, 12 (12), 7336–7343. https://doi.org/10.1021/acscatal.2c01408.
  86. Rezayee, N. M.; Lamhauge, J. N.; Jørgensen, K. A. Organocatalyzed Cross-Nucleophile Couplings: Umpolung of Catalytic Enamines. Acc. Chem. Res. 2022, 55 (12), 1703–1717. https://doi.org/10.1021/acs.accounts.2c00149.
  87. Zhang, X.; Zhao, K.; Gu, Z. Transition Metal-Catalyzed Biaryl Atropisomer Synthesis via a Torsional Strain Promoted Ring-Opening Reaction. Acc. Chem. Res. 2022, 55 (12), 1620–1633. https://doi.org/10.1021/acs.accounts.2c00175.
  88. Boudjelel, M.; Riedel, R.; Schrock, R. R.; Conley, M. P.; Berges, A. J.; Carta, V. Tungstacyclopentane Ring Contraction Yields Olefin Metathesis Catalysts. J. Am. Chem. Soc. 2022, 144 (24), 10929–10942. https://doi.org/10.1021/jacs.2c03732.
  89. Sundararaman, R.; Vigil-Fowler, D.; Schwarz, K. Improving the Accuracy of Atomistic Simulations of the Electrochemical Interface. Chem. Rev. 2022, 122 (12), 10651–10674. https://doi.org/10.1021/acs.chemrev.1c00800.
  90. Vermeire, F. H.; Chung, Y.; Green, W. H. Predicting Solubility Limits of Organic Solutes for a Wide Range of Solvents and Temperatures. J. Am. Chem. Soc. 2022, 144 (24), 10785–10797. https://doi.org/10.1021/jacs.2c01768.
  91. Harry, S. A.; Vemulapalli, S.; Dudding, T.; Lectka, T. Rational Computational Design of Systems Exhibiting Strong Halogen Bonding Involving Fluorine in Bicyclic Diamine Derivatives. J. Org. Chem. 2022, 87 (13), 8413–8419. https://doi.org/10.1021/acs.joc.2c00497.
  92. Meredith, R. J.; Tetrault, T.; Yoon, M.-K.; Zhang, W.; Carmichael, I.; Serianni, A. S. N -Acetyl Side-Chain Conformation in Saccharides: Solution Models Obtained from MA’AT Analysis. J. Org. Chem. 2022, 87 (13), 8368–8379. https://doi.org/10.1021/acs.joc.2c00189.
  93. Thurner, C. W.; Bonmassar, N.; Winkler, D.; Haug, L.; Ploner, K.; Delir Kheyrollahi Nezhad, P.; Drexler, X.; Mohammadi, A.; van Aken, P. A.; Kunze-Liebhäuser, J.; Niaei, A.; Bernardi, J.; Klötzer, B.; Penner, S. Who Does the Job? How Copper Can Replace Noble Metals in Sustainable Catalysis by the Formation of Copper–Mixed Oxide Interfaces. ACS Catal. 2022, 12 (13), 7696–7708. https://doi.org/10.1021/acscatal.2c01584.
  94. Martínez, S.; Dydio, P. Density Functional Theory Studies of the Catalyst Structure–Activity and Selectivity Relationships in Rh(I)-Catalyzed Transfer C–H Borylation of Alkenes. Organometallics 2022, 41 (13), 1649–1658. https://doi.org/10.1021/acs.organomet.2c00148.
  95. Mills, A. W.; Goings, J. J.; Beck, D.; Yang, C.; Li, X. Exploring Potential Energy Surfaces Using Reinforcement Machine Learning. J. Chem. Inf. Model. 2022, 62 (13), 3169–3179. https://doi.org/10.1021/acs.jcim.2c00373.
  96. Nagyházi, M.; Lukács, Á.; Turczel, G.; Hancsók, J.; Valyon, J.; Bényei, A.; Kéki, S.; Tuba, R. Catalytic Decomposition of Long‐Chain Olefins to Propylene via Isomerization‐Metathesis Using Latent Bicyclic (Alkyl)(Amino)Carbene‐Ruthenium Olefin Metathesis Catalysts. Angew Chem Int Ed 2022, 61 (28). https://doi.org/10.1002/anie.202204413.
  97. Votapka, L. W.; Stokely, A. M.; Ojha, A. A.; Amaro, R. E. SEEKR2: Versatile Multiscale Milestoning Utilizing the OpenMM Molecular Dynamics Engine. J. Chem. Inf. Model. 2022, 62 (13), 3253–3262. https://doi.org/10.1021/acs.jcim.2c00501.
  98. Zhou, Y.; Yan, B.; Yang, Q.; Long, X.; Zhang, D.; Luo, R.; Wang, H.; Sun, H.; Xue, X.; Zheng, Y.; Puno, P. Harnessing Natural Products by a Pharmacophore‐Oriented Semisynthesis Approach for the Discovery of Potential Anti‐SARS‐CoV‐2 Agents. Angew Chem Int Ed 2022, 61 (28). https://doi.org/10.1002/anie.202201684.
  99. Hoffmann, N. M.; Wang, X.; Berkelbach, T. C. Linear Free Energy Relationships in Electrostatic Catalysis. ACS Catal. 2022, 12 (14), 8237–8241. https://doi.org/10.1021/acscatal.2c02234.
  100. Mondal, P.; Pal, R.; Pal, A. K.; Das, S.; Misra, A.; Datta, A. Understanding the Regioselectivity of Ion-Pair-Assisted Meta-Selective C(Sp 2 )–H Activation in Conformationally Flexible Arylammonium Salts. J. Org. Chem. 2022, 87 (14), 9222–9231. https://doi.org/10.1021/acs.joc.2c00957.
  101. Rummel, L.; Domanski, M. H. J.; Hausmann, H.; Becker, J.; Schreiner, P. R. London Dispersion Favors Sterically Hindered Diarylthiourea Conformers in Solution. Angew Chem Int Ed 2022, 61 (29). https://doi.org/10.1002/anie.202204393.
  102. Strieth‐Kalthoff, F.; Sandfort, F.; Kühnemund, M.; Schäfer, F. R.; Kuchen, H.; Glorius, F. Machine Learning for Chemical Reactivity: The Importance of Failed Experiments. Angew Chem Int Ed 2022, 61 (29). https://doi.org/10.1002/anie.202204647.
  103. Li, J.; Lopez, S. A. A Look Inside the Black Box of Machine Learning Photodynamics Simulations. Acc. Chem. Res. 2022, 55 (14), 1972–1984. https://doi.org/10.1021/acs.accounts.2c00288.
  104. Cui, M.; Jia, G. Organometallic Chemistry of Transition Metal Alkylidyne Complexes Centered at Metathesis Reactions. J. Am. Chem. Soc. 2022, 144 (28), 12546–12566. https://doi.org/10.1021/jacs.2c01192.
  105. Meredith, N. Y.; Borsley, S.; Smolyar, I. V.; Nichol, G. S.; Baker, C. M.; Ling, K. B.; Cockroft, S. L. Dissecting Solvent Effects on Hydrogen Bonding. Angew Chem Int Ed 2022, 61 (30). https://doi.org/10.1002/anie.202206604.
  106. Okamoto, K.; Shida, N.; Morizumi, H.; Kitano, Y.; Chiba, K. Oxidation Potential Gap (Δ E ox ): The Hidden Parameter in Redox Chemistry. Angew Chem Int Ed 2022, 61 (30). https://doi.org/10.1002/anie.202206064.
  107. Stevens, J. M.; Li, J.; Simmons, E. M.; Wisniewski, S. R.; DiSomma, S.; Fraunhoffer, K. J.; Geng, P.; Hao, B.; Jackson, E. W. Advancing Base Metal Catalysis through Data Science: Insight and Predictive Models for Ni-Catalyzed Borylation through Supervised Machine Learning. Organometallics 2022, 41 (14), 1847–1864. https://doi.org/10.1021/acs.organomet.2c00089.
  108. Zhang, Y.; Wang, C.; Soukaseum, M.; Vlachos, D. G.; Fang, H. Unleashing the Power of Knowledge Extraction from Scientific Literature in Catalysis. J. Chem. Inf. Model. 2022, 62 (14), 3316–3330. https://doi.org/10.1021/acs.jcim.2c00359.
  109. Dömling, A. Innovations and Inventions: Why Was the Ugi Reaction Discovered Only 37 Years after the Passerini Reaction?. J. Org. Chem. 2022, acs.joc.2c00792. https://doi.org/10.1021/acs.joc.2c00792.
  110. Reek, J. N. H.; de Bruin, B.; Pullen, S.; Mooibroek, T. J.; Kluwer, A. M.; Caumes, X. Transition Metal Catalysis Controlled by Hydrogen Bonding in the Second Coordination Sphere. Chem. Rev. 2022, 122 (14), 12308–12369. https://doi.org/10.1021/acs.chemrev.1c00862.
  111. Gibb, B. C. Common Elements, Uncommon Chemistry. Nat. Chem. 2022, 14 (8), 843–844. https://doi.org/10.1038/s41557-022-01014-y.
  112. Koner, A.; Morgenstern, B.; Andrada, D. M. Metathesis Reactions of a NHC‐Stabilized Phosphaborene. Angew Chem Int Ed 2022, 61 (31). https://doi.org/10.1002/anie.202203345.
  113. Kysliak, O.; Schreiner, S. H. F.; Grabicki, N.; Liebing, P.; Weigend, F.; Dumele, O.; Kretschmer, R. A Planar Five‐Membered Aromatic Ring Stabilized by Only Two Π‐Electrons. Angew Chem Int Ed 2022, 61 (31). https://doi.org/10.1002/anie.202206963.
  114. Farrar, E. H. E.; Grayson, M. N. Noncovalent Interactions in the Oxazaborolidine-Catalyzed Enantioselective Mukaiyama Aldol. J. Org. Chem. 2022, 87 (15), 10054–10061. https://doi.org/10.1021/acs.joc.2c01039.
  115. Medford, A. J.; Moses, P. G.; Jacobsen, K. W.; Peterson, A. A. A Career in Catalysis: Jens Kehlet Nørskov. ACS Catal. 2022, 12 (15), 9679–9689. https://doi.org/10.1021/acscatal.2c02217.
  116. Aniceto, N.; Bonifácio, V. D. B.; Guedes, R. C.; Martinho, N. Exploring the Chemical Space of Urease Inhibitors to Extract Meaningful Trends and Drivers of Activity. J. Chem. Inf. Model. 2022, 62 (15), 3535–3550. https://doi.org/10.1021/acs.jcim.2c00150.
  117. Blay, V.; Radivojevic, T.; Allen, J. E.; Hudson, C. M.; Garcia Martin, H. MACAW: An Accessible Tool for Molecular Embedding and Inverse Molecular Design. J. Chem. Inf. Model. 2022, 62 (15), 3551–3564. https://doi.org/10.1021/acs.jcim.2c00229.
  118. Kaithal, A.; Wagener, T.; Bellotti, P.; Daniliuc, C. G.; Schlichter, L.; Glorius, F. Access to Unexplored 3D Chemical Space: Cis ‐Selective Arene Hydrogenation for the Synthesis of Saturated Cyclic Boronic Acids. Angew Chem Int Ed 2022, 61 (32). https://doi.org/10.1002/anie.202206687.
  119. Tantillo, D. J. Portable Models for Entropy Effects on Kinetic Selectivity. J. Am. Chem. Soc. 2022, 144 (31), 13996–14004. https://doi.org/10.1021/jacs.2c04683.
  120. Donnelly, L. J.; Berthet, J.; Cantat, T. Selective Reduction of Secondary Amides to Imines Catalysed by Schwartz’s Reagent**. Angew Chem Int Ed 2022, 61 (33). https://doi.org/10.1002/anie.202206170.
  121. Zhang, G.; Li, J.; Liang, X.; Liu, Z. Automated Reaction Mechanisms and Kinetics with the Nudged Elastic Band Method‐based AMK_Mountain and Its Description of the Preliminary Alkaline Hydrolysis of Nitrocellulose Monomer. J Comput Chem 2022, 43 (22), 1513–1523. https://doi.org/10.1002/jcc.26891.
  122. Schleif, T.; Prado Merini, M.; Henkel, S.; Sander, W. Solvation Effects on Quantum Tunneling Reactions. Acc. Chem. Res. 2022, 55 (16), 2180–2190. https://doi.org/10.1021/acs.accounts.2c00151.
  123. Boiko, D. A.; Kozlov, K. S.; Burykina, J. V.; Ilyushenkova, V. V.; Ananikov, V. P. Fully Automated Unconstrained Analysis of High-Resolution Mass Spectrometry Data with Machine Learning. J. Am. Chem. Soc. 2022, 144 (32), 14590–14606. https://doi.org/10.1021/jacs.2c03631.
  124. Schleinitz, J.; Langevin, M.; Smail, Y.; Wehnert, B.; Grimaud, L.; Vuilleumier, R. Machine Learning Yield Prediction from NiCOlit, a Small-Size Literature Data Set of Nickel Catalyzed C–O Couplings. J. Am. Chem. Soc. 2022, 144 (32), 14722–14730. https://doi.org/10.1021/jacs.2c05302.
  125. Carvalho, M. H. R.; Ribeiro, J. P. R. S.; De Castro, P. P.; Passos, S. T. A.; Neto, B. A. D.; Dos Santos, H. F.; Amarante, G. W. Solvent Dependent Competitive Mechanisms for the Ugi Multicomponent Reaction: A Joint Theoretical and Experimental Study in the α-Acyl Aminocarboxamides vs α-Amino Amidines Formation. J. Org. Chem. 2022, 87 (16), 11007–11020. https://doi.org/10.1021/acs.joc.2c01272.
  126. Harry, S. A.; Kazim, M.; Nguyen, P. M.; Zhu, A.; Xiang, M. R.; Catazaro, J.; Siegler, M.; Lectka, T. The Close Interaction of a C−F Bond with an Amide Carbonyl: Crystallographic and Spectroscopic Characterization. Angew Chem Int Ed 2022, 61 (34). https://doi.org/10.1002/anie.202207966.
  127. Berkson, Z. J.; Lätsch, L.; Hillenbrand, J.; Fürstner, A.; Copéret, C. Classifying and Understanding the Reactivities of Mo-Based Alkyne Metathesis Catalysts from 95 Mo NMR Chemical Shift Descriptors. J. Am. Chem. Soc. 2022, 144 (33), 15020–15025. https://doi.org/10.1021/jacs.2c06252.
  128. Mai, H.; Le, T. C.; Chen, D.; Winkler, D. A.; Caruso, R. A. Machine Learning for Electrocatalyst and Photocatalyst Design and Discovery. Chem. Rev. 2022, 122 (16), 13478–13515. https://doi.org/10.1021/acs.chemrev.2c00061.
  129. Peluso, P.; Chankvetadze, B. Recognition in the Domain of Molecular Chirality: From Noncovalent Interactions to Separation of Enantiomers. Chem. Rev. 2022, 122 (16), 13235–13400. https://doi.org/10.1021/acs.chemrev.1c00846.
  130. Jiang, C.; Song, H.; Sun, G.; Chang, X.; Zhen, S.; Wu, S.; Zhao, Z.; Gong, J. Data‐Driven Interpretable Descriptors for the Structure–Activity Relationship of Surface Lattice Oxygen on Doped Vanadium Oxides. Angew Chem Int Ed 2022, 61 (35). https://doi.org/10.1002/anie.202206758.
  131. Xiong, W.; Shi, Q.; Liu, W. H. Simple and Practical Conversion of Benzoic Acids to Phenols at Room Temperature. J. Am. Chem. Soc. 2022, 144 (34), 15894–15902. https://doi.org/10.1021/jacs.2c07529.
  132. Cole, J. M. The Chemistry of Errors. Nat. Chem. 2022, 14 (9), 973–975. https://doi.org/10.1038/s41557-022-01028-6.
  133. Lau, S.; Hood, T. M.; Webster, R. L. Broken Promises? On the Continued Challenges Faced in Catalytic Hydrophosphination. ACS Catal. 2022, 12 (17), 10939–10949. https://doi.org/10.1021/acscatal.2c03144.
  134. Zhang, Y.; Peck, T. C.; Reddy, G. K.; Banerjee, D.; Jia, H.; Roberts, C. A.; Ling, C. Descriptor-Free Design of Multicomponent Catalysts. ACS Catal. 2022, 12 (17), 10562–10571. https://doi.org/10.1021/acscatal.2c02807.
  135. Hilgers, R.; Yong Teng, S.; Briš, A.; Pereverzev, A. Y.; White, P.; Jansen, J. J.; Roithová, J. Monitoring Reaction Intermediates to Predict Enantioselectivity Using Mass Spectrometry**. Angew Chem Int Ed 2022, 61 (36). https://doi.org/10.1002/anie.202205720.
  136. Perignat, E.; Fleming, F. F. Sunk‐Cost Bias and Knowing When to Terminate a Research Project. Angew Chem Int Ed 2022, 61 (36). https://doi.org/10.1002/anie.202208429.
  137. Wang, J.; Zhu, Y.; Li, M.; Wang, Y.; Wang, X.; Tao, Y. Tug‐of‐War between Two Distinct Catalytic Sites Enables Fast and Selective Ring‐Opening Copolymerizations. Angew Chem Int Ed 2022, 61 (36). https://doi.org/10.1002/anie.202208525.
  138. Sengupta, A.; Li, B.; Svatunek, D.; Liu, F.; Houk, K. N. Cycloaddition Reactivities Analyzed by Energy Decomposition Analyses and the Frontier Molecular Orbital Model. Acc. Chem. Res. 2022, 55 (17), 2467–2479. https://doi.org/10.1021/acs.accounts.2c00343.
  139. Wahlers, J.; Rosales, A. R.; Berkel, N.; Forbes, A.; Helquist, P.; Norrby, P.-O.; Wiest, O. A Quantum-Guided Molecular Mechanics Force Field for the Ferrocene Scaffold. J. Org. Chem. 2022. https://doi.org/10.1021/acs.joc.2c01553.
  140. Baek, J. W.; Ko, J. H.; Park, J. H.; Park, J. Y.; Lee, H. J.; Seo, Y. H.; Lee, J.; Lee, B. Y. α-Olefin Trimerization for Lubricant Base Oils with Modified Chevron–Phillips Ethylene Trimerization Catalysts. Organometallics 2022, 41 (17), 2455–2465. https://doi.org/10.1021/acs.organomet.2c00249.
  141. Breitwieser, K.; Bahmann, H.; Weiss, R.; Munz, D. Gauging Radical Stabilization with Carbenes. Angew Chem Int Ed 2022, 61 (37). https://doi.org/10.1002/anie.202206390.
  142. Pinheiro, G. A.; Da Silva, J. L. F.; Quiles, M. G. SMICLR: Contrastive Learning on Multiple Molecular Representations for Semisupervised and Unsupervised Representation Learning. J. Chem. Inf. Model. 2022, 62 (17), 3948–3960. https://doi.org/10.1021/acs.jcim.2c00521.
  143. Wei, G.-W.; Zhu, F.; Merz, K. M. Editorial on Machine Learning. J. Chem. Inf. Model. 2022, 62 (17), 3941–3941. https://doi.org/10.1021/acs.jcim.2c01031.
  144. Wen, X.; Xu, X.; Li, H.; Zhao, Y.; Luo, Y. Theoretical Mechanistic Studies of the Polymerization of Functionalized Styrenes Catalyzed by Rare-Earth-Metal Complexes: Stereoselectivity Regulation. Organometallics 2022, 41 (17), 2466–2473. https://doi.org/10.1021/acs.organomet.2c00257.
  145. Yuan, Y.; Yan, H.; Cui, Z.; Liu, Z.; Su, W.; Zhang, R. Quantum Chemical Calculations with Machine Learning for Multipolar Electrostatics Prediction in RNA: An Application to Pentose. J. Chem. Inf. Model. 2022, 62 (17), 4122–4133. https://doi.org/10.1021/acs.jcim.2c00747.
  146. Zhang, Y.; Chen, J.; Huang, H. Radical Brook Rearrangements: Concept and Recent Developments. Angew Chem Int Ed 2022, 61 (37). https://doi.org/10.1002/anie.202205671.
  147. Aubry K. Miller. Angew Chem Int Ed 2022, 61 (37). https://doi.org/10.1002/anie.202209893.
  148. Geiger, J.; Settels, V.; Deglmann, P.; Schäfer, A.; Bergeler, M. Automated Input Structure Generation for Single‐ended Reaction Path Optimizations. J Comput Chem 2022, 43 (24), 1662–1674. https://doi.org/10.1002/jcc.26969.
  149. Cai, B.-G.; Li, Q.; Empel, C.; Li, L.; Koenigs, R. M.; Xuan, J. Dark and Light Reactions of Carbenes─Merging Carbene Transfer Reactions with N-Heterocyclic Carbene Catalysis for the Synthesis of Hydroxamic Acid Esters. ACS Catal. 2022, 12 (18), 11129–11136. https://doi.org/10.1021/acscatal.2c02875.
  150. Li, B.; Luo, B.; Yang, H.; Tang, W. Heck Reaction of N ‐Heteroaryl Halides for the Concise Synthesis of Chiral Α‐Heteroaryl‐substituted Heterocycles. Angew Chem Int Ed 2022, 61 (38). https://doi.org/10.1002/anie.202209087.
  151. Perreault, S.; Chandrasekhar, J.; Patel, L. Atropisomerism in Drug Discovery: A Medicinal Chemistry Perspective Inspired by Atropisomeric Class I PI3K Inhibitors. Acc. Chem. Res. 2022, 55 (18), 2581–2593. https://doi.org/10.1021/acs.accounts.2c00485.
  152. Howard, J. R.; Bhakare, A.; Akhtar, Z.; Wolf, C.; Anslyn, E. V. Data-Driven Prediction of Circular Dichroism-Based Calibration Curves for the Rapid Screening of Chiral Primary Amine Enantiomeric Excess Values. J. Am. Chem. Soc. 2022, 144 (37), 17269–17276. https://doi.org/10.1021/jacs.2c08127.
  153. Xing, L.; Lian, L.; Wang, Z.; Cheng, Z.; He, Y.; Cui, J.; Truhlar, D. G. Lowering of Reaction Rates by Energetically Favorable Hydrogen Bonding in the Transition State. Degradation of Biofuel Ketohydroperoxides by OH. J. Am. Chem. Soc. 2022, 144 (37), 16984–16995. https://doi.org/10.1021/jacs.2c06124.
  154. Beuming, T.; Martín, H.; Díaz-Rovira, A. M.; Díaz, L.; Guallar, V.; Ray, S. S. Are Deep Learning Structural Models Sufficiently Accurate for Free-Energy Calculations? Application of FEP+ to AlphaFold2-Predicted Structures. J. Chem. Inf. Model. 2022, 62 (18), 4351–4360. https://doi.org/10.1021/acs.jcim.2c00796.
  155. Escorihuela, J.; Wolf, L. M. Computational Study on the Co-Mediated Intramolecular Pauson–Khand Reaction of Fluorinated and Chiral N -Tethered 1,7-Enynes. Organometallics 2022, 41 (18), 2525–2534. https://doi.org/10.1021/acs.organomet.2c00227.
  156. Nie, W.; Liu, D.; Li, S.; Yu, H.; Fu, Y. Nucleophilicity Prediction Using Graph Neural Networks. J. Chem. Inf. Model. 2022, 62 (18), 4319–4328. https://doi.org/10.1021/acs.jcim.2c00696.
  157. Wang, S.; Kind, T.; Bremer, P. L.; Tantillo, D. J.; Fiehn, O. Beyond the Ground State: Predicting Electron Ionization Mass Spectra Using Excited-State Molecular Dynamics. J. Chem. Inf. Model. 2022, 62 (18), 4403–4410. https://doi.org/10.1021/acs.jcim.2c00597.
  158. Woodward, D. J.; Bradley, A. R.; van Hoorn, W. P. Coverage Score: A Model Agnostic Method to Efficiently Explore Chemical Space. J. Chem. Inf. Model. 2022, 62 (18), 4391–4402. https://doi.org/10.1021/acs.jcim.2c00258.
  159. Zabolotna, Y.; Bonachera, F.; Horvath, D.; Lin, A.; Marcou, G.; Klimchuk, O.; Varnek, A. Chemspace Atlas: Multiscale Chemography of Ultralarge Libraries for Drug Discovery. J. Chem. Inf. Model. 2022, 62 (18), 4537–4548. https://doi.org/10.1021/acs.jcim.2c00509.
  160. Miller, E.; Mai, B. K.; Read, J. A.; Bell, W. C.; Derrick, J. S.; Liu, P.; Toste, F. D. A Combined DFT, Energy Decomposition, and Data Analysis Approach to Investigate the Relationship Between Noncovalent Interactions and Selectivity in a Flexible DABCOnium/Chiral Anion Catalyst System. ACS Catal. 2022, 12369–12385. https://doi.org/10.1021/acscatal.2c03077.
  161. Bouthillette, L. M.; Aniebok, V.; Colosimo, D. A.; Brumley, D.; MacMillan, J. B. Nonenzymatic Reactions in Natural Product Formation. Chem. Rev. 2022, 122 (18), 14815–14841. https://doi.org/10.1021/acs.chemrev.2c00306.
  162. Dang, D.; Wilson, L. W.; Zimmerman, P. M. The Numerical Evaluation of Slater Integrals on Graphics Processing Units. J Comput Chem 2022, 43 (25), 1680–1689. https://doi.org/10.1002/jcc.26968.
  163. Jin, Y.; Jing, Y.; Li, C.; Li, M.; Wu, W.; Ke, Z.; Jiang, H. Palladium-Catalysed Selective Oxidative Amination of Olefins with Lewis Basic Amines. Nat. Chem. 2022, 14 (10), 1118–1125. https://doi.org/10.1038/s41557-022-01023-x.
  164. Joudan, S. Postdoc Progression. Nat. Chem. 2022, 14 (10), 1089–1090. https://doi.org/10.1038/s41557-022-01053-5.
  165. Kingwell, K. Psychedelics Take on Alcohol Dependence. Nat Rev Drug Discov 2022, 21 (10), 702–702. https://doi.org/10.1038/d41573-022-00145-8.
  166. Miyazato, J. Upcoming Market Catalysts in Q4 2022. Nat Rev Drug Discov 2022, 21 (10), 703–703. https://doi.org/10.1038/d41573-022-00155-6.
  167. Vine, L. E.; Schomaker, J. M. Back to Basics. Nat. Chem. 2022, 14 (10), 1093–1094. https://doi.org/10.1038/s41557-022-01029-5.
  168. Bruce‐Chwatt, T.; Naidoo, K. J. Molecular Mechanisms from Reaction Coordinate Graph Enabled Multidimensional Free Energies Illustrated on Water Dimer Hydrogen Bonding. J Comput Chem 2022, 43 (26), 1802–1813. https://doi.org/10.1002/jcc.26982.
  169. Scheiner, S. On the Reliability of Atoms in Molecules, Noncovalent Index, and Natural Bond Orbital to Identify and Quantify Noncovalent Bonds. J Comput Chem 2022, 43 (26), 1814–1824. https://doi.org/10.1002/jcc.26983.
  170. Xu, E. Y.; Werth, J.; Roos, C. B.; Bendelsmith, A. J.; Sigman, M. S.; Knowles, R. R. Noncovalent Stabilization of Radical Intermediates in the Enantioselective Hydroamination of Alkenes with Sulfonamides. J. Am. Chem. Soc. 2022. https://doi.org/10.1021/jacs.2c07099.
  171. Zhang, Z.; Brgoch, J. Treating Superhard Materials as Anomalies. J. Am. Chem. Soc. 2022, 144 (39), 18075–18080. https://doi.org/10.1021/jacs.2c07957.
  172. Harry, S. A.; Garrison, N. G.; Zhu, A.; Xiang, M. R.; Siegler, M. A.; Lectka, T. C–F Bonds as “Frozen” Nucleophiles: Unconsummated S N 2 Reactions. J. Org. Chem. 2022, 87 (19), 13406–13410. https://doi.org/10.1021/acs.joc.2c01788.
  173. Ni, P.; Yang, L.; Shen, Y.; Zhang, L.; Ma, Y.; Sun, M.; Cheng, R.; Ye, J. Synthesis of Phenols from Aryl Ammonium Salts under Mild Conditions. J. Org. Chem. 2022, 87 (19), 12677–12687. https://doi.org/10.1021/acs.joc.2c01133.
  174. Rummel, L.; König, H. F.; Hausmann, H.; Schreiner, P. R. Silyl Groups Are Strong Dispersion Energy Donors. J. Org. Chem. 2022, 87 (19), 13168–13177. https://doi.org/10.1021/acs.joc.2c01633.
  175. Wu, L.; An, J.; Jing, X.; Chen, C.-C.; Dai, L.; Xu, Y.; Liu, W.; Guo, R.-T.; Nie, Y. Molecular Insights into the Regioselectivity of the Fe(II)/2-Ketoglutarate-Dependent Dioxygenase-Catalyzed C–H Hydroxylation of Amino Acids. ACS Catal. 2022, 12 (19), 11586–11596. https://doi.org/10.1021/acscatal.2c03106.
  176. Zhu, Q.; Gu, Y.; Liang, X.; Wang, X.; Ma, J. A Machine Learning Model To Predict CO 2 Reduction Reactivity and Products Transferred from Metal-Zeolites. ACS Catal. 2022, 12 (19), 12336–12348. https://doi.org/10.1021/acscatal.2c03250.
  177. Aldeghi, M.; Graff, D. E.; Frey, N.; Morrone, J. A.; Pyzer-Knapp, E. O.; Jordan, K. E.; Coley, C. W. Roughness of Molecular Property Landscapes and Its Impact on Modellability. J. Chem. Inf. Model. 2022, 62 (19), 4660–4671. https://doi.org/10.1021/acs.jcim.2c00903.
  178. Chen, S.; Zhu, J. Probing the Hyperconjugative Aromaticity of Cyclopentadiene and Pyrroliums Containing Group 7 Transition Metal Substituents. Organometallics 2022, 41 (19), 2742–2752. https://doi.org/10.1021/acs.organomet.2c00352.
  179. Kossaka Macedo, G.; Haiduke, R. L. A. The Performance of Exchange—Correlation Functionals in Describing Electron Density Parameters of Saddle Point Structures along Chemical Reactions. J Comput Chem 2022, 43 (27), 1830–1838. https://doi.org/10.1002/jcc.26985.
  180. Bursch, M.; Mewes, J.; Hansen, A.; Grimme, S. Best‐Practice DFT Protocols for Basic Molecular Computational Chemistry**. Angew Chem Int Ed 2022, 61 (42). https://doi.org/10.1002/anie.202205735.
  181. Sager-Smith, L. M.; Mazziotti, D. A. Reducing the Quantum Many-Electron Problem to Two Electrons with Machine Learning. J. Am. Chem. Soc. 2022, 144 (41), 18959–18966. https://doi.org/10.1021/jacs.2c07112.
  182. Ai, H.; Leidecker, B. N.; Dam, P.; Kubis, C.; Rabeah, J.; Wu, X. Iron‐Catalyzed Alkoxycarbonylation of Alkyl Bromides via a Two‐Electron Transfer Process. Angew Chem Int Ed 2022, 61 (43). https://doi.org/10.1002/anie.202211939.
  183. Dong, K.; Xu, C.; Ren, J.; Qu, X. Chiral Nanozymes for Enantioselective Biological Catalysis. Angew Chem Int Ed 2022, 61 (43). https://doi.org/10.1002/anie.202208757.
  184. Johnson, M. S.; Dong, X.; Grinberg Dana, A.; Chung, Y.; Farina, D.; Gillis, R. J.; Liu, M.; Yee, N. W.; Blondal, K.; Mazeau, E.; Grambow, C. A.; Payne, A. M.; Spiekermann, K. A.; Pang, H.-W.; Goldsmith, C. F.; West, R. H.; Green, W. H. RMG Database for Chemical Property Prediction. J. Chem. Inf. Model. 2022, 62 (20), 4906–4915. https://doi.org/10.1021/acs.jcim.2c00965.
  185. Bojar, D.; Lisacek, F. Glycoinformatics in the Artificial Intelligence Era. Chem. Rev. 2022, 122 (20), 15971–15988. https://doi.org/10.1021/acs.chemrev.2c00110.
  186. Kelly, S. P.; Shende, V. V.; Flynn, A. R.; Dan, Q.; Ye, Y.; Smith, J. L.; Tsukamoto, S.; Sigman, M. S.; Sherman, D. H. Data Science-Driven Analysis of Substrate-Permissive Diketopiperazine Reverse Prenyltransferase NotF: Applications in Protein Engineering and Cascade Biocatalytic Synthesis of (−)-Eurotiumin A. J. Am. Chem. Soc. 2022, 144 (42), 19326–19336. https://doi.org/10.1021/jacs.2c06631.
  187. Angello, N. H.; Rathore, V.; Beker, W.; Wołos, A.; Jira, E. R.; Roszak, R.; Wu, T. C.; Schroeder, C. M.; Aspuru-Guzik, A.; Grzybowski, B. A.; Burke, M. D. Closed-Loop Optimization of General Reaction Conditions for Heteroaryl Suzuki-Miyaura Coupling. Science 2022, 378 (6618), 399–405. https://doi.org/10.1126/science.adc8743.
  188. Jebsen, J. M.; Nicoll Baines, K.; Oliver, R. A.; Jayasinghe, I. Dismantling Barriers Faced by Women in STEM. Nat. Chem. 2022, 14 (11), 1203–1206. https://doi.org/10.1038/s41557-022-01072-2.
  189. Manzano, J. S.; Hou, W.; Zalesskiy, S. S.; Frei, P.; Wang, H.; Kitson, P. J.; Cronin, L. An Autonomous Portable Platform for Universal Chemical Synthesis. Nat. Chem. 2022, 14 (11), 1311–1318. https://doi.org/10.1038/s41557-022-01016-w.
  190. Evans, D. A.; Beiger, J. J.; Burch, J. D.; Fuller, P. H.; Glorius, F.; Kattnig, E.; Thaisrivongs, D. A.; Trenkle, W. C.; Young, J. M.; Zhang, J. Total Synthesis of Aflastatin A. J. Am. Chem. Soc. 2022, 144 (43), 19953–19972. https://doi.org/10.1021/jacs.2c08244.
  191. Kamileen, M. O.; DeMars, M. D.; Hong, B.; Nakamura, Y.; Paetz, C.; Lichman, B. R.; Sonawane, P. D.; Caputi, L.; O’Connor, S. E. Recycling Upstream Redox Enzymes Expands the Regioselectivity of Cycloaddition in Pseudo-Aspidosperma Alkaloid Biosynthesis. J. Am. Chem. Soc. 2022, 144 (43), 19673–19679. https://doi.org/10.1021/jacs.2c08107.
  192. Parastar, H.; Tauler, R. Big (Bio)Chemical Data Mining Using Chemometric Methods: A Need for Chemists. Angew Chem Int Ed 2022, 61 (44). https://doi.org/10.1002/anie.201801134.
  193. Ke, C.; Lin, Z.; Liu, S. Three-Dimensional Activity Volcano Plot under an External Electric Field. ACS Catal. 2022, 12 (21), 13542–13548. https://doi.org/10.1021/acscatal.2c04961.
  194. Koppaka, A.; Kirkland, J. K.; Periana, R. A.; Ess, D. H. Experimental Demonstration and Density Functional Theory Mechanistic Analysis of Arene C–H Bond Oxidation and Product Protection by Osmium Tetroxide in a Strongly Basic/Nucleophilic Solvent. J. Org. Chem. 2022, 87 (21), 13573–13582. https://doi.org/10.1021/acs.joc.2c01159.
  195. Lin, F.; Xu, M.; Ramasamy, K. K.; Li, Z.; Klinger, J. L.; Schaidle, J. A.; Wang, H. Catalyst Deactivation and Its Mitigation during Catalytic Conversions of Biomass. ACS Catal. 2022, 12 (21), 13555–13599. https://doi.org/10.1021/acscatal.2c02074.
  196. Pollastrini, M.; Pasquinelli, L.; Górecki, M.; Balzano, F.; Cupellini, L.; Lipparini, F.; Uccello Barretta, G.; Marchetti, F.; Pescitelli, G.; Angelici, G. A Unique and Stable Polyproline I Helix Sorted out from Conformational Equilibrium by Solvent Polarity. J. Org. Chem. 2022, 87 (21), 13715–13725. https://doi.org/10.1021/acs.joc.2c01377.
  197. Zhao, Q.; Savoie, B. M. Algorithmic Explorations of Unimolecular and Bimolecular Reaction Spaces**. Angew Chem Int Ed 2022, 61 (46). https://doi.org/10.1002/anie.202210693.
  198. Zhao, S.; Liang, H.; Hu, X.; Li, S.; Daasbjerg, K. Challenges and Prospects in the Catalytic Conversion of Carbon Dioxide to Formaldehyde. Angew Chem Int Ed 2022, 61 (46). https://doi.org/10.1002/anie.202204008.
  199. Kong, L.; Bryce, R. A. Modeling Pyranose Ring Pucker in Carbohydrates Using Machine Learning and Semi‐empirical Quantum Chemical Methods. J Comput Chem 2022, 43 (30), 2009–2022. https://doi.org/10.1002/jcc.27000.
  200. Xu, J.; Grosslight, S.; Mack, K. A.; Nguyen, S. C.; Clagg, K.; Lim, N.-K.; Timmerman, J. C.; Shen, J.; White, N. A.; Sirois, L. E.; Han, C.; Zhang, H.; Sigman, M. S.; Gosselin, F. Atroposelective Negishi Coupling Optimization Guided by Multivariate Linear Regression Analysis: Asymmetric Synthesis of KRAS G12C Covalent Inhibitor GDC-6036. J. Am. Chem. Soc. 2022, 144 (45), 20955–20963. https://doi.org/10.1021/jacs.2c09917.
  201. Liu, D.; Xu, Z.; Lu, X.; Yu, H.; Fu, Y. Linear Regression Model for Predicting Allyl Alcohol C–O Bond Activity under Palladium Catalysis. ACS Catal. 2022, 12 (22), 13921–13929. https://doi.org/10.1021/acscatal.2c03847.
  202. Qian, H.; Wei, J.; Yu, C.; Tang, F.; Jiang, W.; Xia, D.; Gan, L. In Situ Quantification of the Active Sites, Turnover Frequency, and Stability of Ni–Fe (Oxy)Hydroxides for the Oxygen Evolution Reaction. ACS Catal. 2022, 12 (22), 14280–14289. https://doi.org/10.1021/acscatal.2c03898.
  203. Somnarin, T.; Krawmanee, P.; Gleeson, M. P.; Gleeson, D. Computational Investigation of the Radical‐mediated Mechanism of Formation of Difluoro Methyl Oxindoles: Elucidation of the Reaction Selectivity and Yields. J Comput Chem 2022, jcc.27031. https://doi.org/10.1002/jcc.27031.
  204. Zhang, Y.; Zhang, Y.; Hu, X.; Wang, C.; Jian, Z. Advances on Controlled Chain Walking and Suppression of Chain Transfer in Catalytic Olefin Polymerization. ACS Catal. 2022, 12 (22), 14304–14320. https://doi.org/10.1021/acscatal.2c04272.
  205. Del Vecchio, A.; Smallman, H. R.; Morvan, J.; McBride, T.; Browne, D. L.; Mauduit, M. Challenges Arising from Continuous‐Flow Olefin Metathesis. Angew Chem Int Ed 2022, 61 (47). https://doi.org/10.1002/anie.202209564.
  206. Hines, P. A.; Herold, R.; Pinheiro, L.; Frias, Z.; Arlett, P. Artificial Intelligence in European Medicines Regulation. Nat Rev Drug Discov 2022, d41573-022-00190–00193. https://doi.org/10.1038/d41573-022-00190-3.
  207. Celma, A.; Bade, R.; Sancho, J. V.; Hernandez, F.; Humphries, M.; Bijlsma, L. Prediction of Retention Time and Collision Cross Section (CCS H+ , CCS H– , and CCS Na+ ) of Emerging Contaminants Using Multiple Adaptive Regression Splines. J. Chem. Inf. Model. 2022, 62 (22), 5425–5434. https://doi.org/10.1021/acs.jcim.2c00847.
  208. Daura, X.; Conchillo-Solé, O. On Quality Thresholds for the Clustering of Molecular Structures. J. Chem. Inf. Model. 2022, 62 (22), 5738–5745. https://doi.org/10.1021/acs.jcim.2c01079.
  209. Farquhar, A. H.; Gardner, K. E.; Acosta-Calle, S.; Camp, A. M.; Chen, C.-H.; Miller, A. J. M. Cation-Controlled Olefin Isomerization Catalysis with Palladium Pincer Complexes. Organometallics 2022, 41 (22), 3366–3372. https://doi.org/10.1021/acs.organomet.2c00315.
  210. Hormazabal, R. S.; Kang, J. W.; Park, K.; Yang, D. R. Not from Scratch: Predicting Thermophysical Properties through Model-Based Transfer Learning Using Graph Convolutional Networks. J. Chem. Inf. Model. 2022, 62 (22), 5411–5424. https://doi.org/10.1021/acs.jcim.2c00846.
  211. Iribarren, I.; Trujillo, C. Efficiency and Suitability When Exploring the Conformational Space of Phase-Transfer Catalysts. J. Chem. Inf. Model. 2022, 62 (22), 5568–5580. https://doi.org/10.1021/acs.jcim.2c00934.
  212. Yan, M.; Kang, X.; Li, S.; Xu, X.; Luo, Y.; He, S.; Chen, C. Mechanistic Studies on Nickel-Catalyzed Ethylene Polymerization: Ligand Effects and Quantitative Structure–Activity Relationship Model. Organometallics 2022, 41 (22), 3212–3218. https://doi.org/10.1021/acs.organomet.2c00105.
  213. Corrigendum: Mechanistic Studies on the Organocatalytic Α‐Chlorination of Aldehydes: The Role and Nature of Off‐Cycle Intermediates. Angew Chem Int Ed 2022. https://doi.org/10.1002/anie.202216920.
  214. Tan, G.; Paulus, F.; Rentería-Gómez, Á.; Lalisse, R. F.; Daniliuc, C. G.; Gutierrez, O.; Glorius, F. Highly Selective Radical Relay 1,4-Oxyimination of Two Electronically Differentiated Olefins. J. Am. Chem. Soc. 2022, 144 (47), 21664–21673. https://doi.org/10.1021/jacs.2c09244.
  215. Boike, L.; Henning, N. J.; Nomura, D. K. Advances in Covalent Drug Discovery. Nat Rev Drug Discov 2022, 21 (12), 881–898. https://doi.org/10.1038/s41573-022-00542-z.
  216. Scannell, J. W.; Bosley, J.; Hickman, J. A.; Dawson, G. R.; Truebel, H.; Ferreira, G. S.; Richards, D.; Treherne, J. M. Predictive Validity in Drug Discovery: What It Is, Why It Matters and How to Improve It. Nat Rev Drug Discov 2022, 21 (12), 915–931. https://doi.org/10.1038/s41573-022-00552-x.
  217. Wade, J.; Salerno, F.; Kilbride, R. C.; Kim, D. K.; Schmidt, J. A.; Smith, J. A.; LeBlanc, L. M.; Wolpert, E. H.; Adeleke, A. A.; Johnson, E. R.; Nelson, J.; Mori, T.; Jelfs, K. E.; Heutz, S.; Fuchter, M. J. Controlling Anisotropic Properties by Manipulating the Orientation of Chiral Small Molecules. Nat. Chem. 2022, 14 (12), 1383–1389. https://doi.org/10.1038/s41557-022-01044-6.
  218. Dummer, N. F.; Willock, D. J.; He, Q.; Howard, M. J.; Lewis, R. J.; Qi, G.; Taylor, S. H.; Xu, J.; Bethell, D.; Kiely, C. J.; Hutchings, G. J. Methane Oxidation to Methanol. Chem. Rev. 2022, acs.chemrev.2c00439. https://doi.org/10.1021/acs.chemrev.2c00439.
  219. Leslie, M. CRISPR Is so Popular Even Viruses May Use It. Science 2022, 378 (6623), 935–936. https://doi.org/10.1126/science.adg0519.
  220. Nader, H. B. Science Urgencies for Brazil. Science 2022, 378 (6623), 931–931. https://doi.org/10.1126/science.adf9526.
  221. Burn, M. J.; Popelier, P. L. A. Producing Chemically Accurate Atomic Gaussian Process Regression Models by Active Learning for Molecular Simulation. J Comput Chem 2022, 43 (31), 2084–2098. https://doi.org/10.1002/jcc.27006.
  222. Choudhary, V. K.; Mandhan, K.; Dash, D.; Bhardwaj, S.; Kumari, M.; Sharma, N. Density Functional Theory Studies on Molecular Geometry, Spectroscopy, HOMO – LUMO and Reactivity Descriptors of Titanium( IV ) and Oxidozirconium( IV ) Complexes of Phenylacetohydroxamic Acid. J Comput Chem 2022, 43 (31), 2060–2071. https://doi.org/10.1002/jcc.27004.
  223. Mayer, L. C.; Heitsch, S.; Trapp, O. Nonlinear Effects in Asymmetric Catalysis by Design: Concept, Synthesis, and Applications. Acc. Chem. Res. 2022, 55 (23), 3345–3361. https://doi.org/10.1021/acs.accounts.2c00557.
  224. Rose, B. T.; Timmerman, J. C.; Bawel, S. A.; Chin, S.; Zhang, H.; Denmark, S. E. High-Level Data Fusion Enables the Chemoinformatically Guided Discovery of Chiral Disulfonimide Catalysts for Atropselective Iodination of 2-Amino-6-Arylpyridines. J. Am. Chem. Soc. 2022. https://doi.org/10.1021/jacs.2c08820.
  225. Kirkland, J. K.; Johnson, S. K.; Vogiatzis, K. D. Computational Investigation of Functionalized Carbenes on Dinitrogen Activation. J Comput Chem 2022, jcc.27046. https://doi.org/10.1002/jcc.27046.
  226. Couzin-Frankel, J.; Piller, C. Alzheimer’s Drug Stirs Excitement—and Concerns. Science 2022, 378 (6624), 1030–1031. https://doi.org/10.1126/science.adg1899.
  227. Haghani, M.; Lovreglio, R. Data-Based Tools Can Prevent Crowd Crushes. Science 2022, 378 (6624), 1060–1061. https://doi.org/10.1126/science.adf5949.
  228. Kolter, J. Z. AlphaCode and “Data-Driven” Programming. Science 2022, 378 (6624), 1056–1056. https://doi.org/10.1126/science.add8258.
  229. Li, Y.; Choi, D.; Chung, J.; Kushman, N.; Schrittwieser, J.; Leblond, R.; Eccles, T.; Keeling, J.; Gimeno, F.; Dal Lago, A.; Hubert, T.; Choy, P.; de Masson d’Autume, C.; Babuschkin, I.; Chen, X.; Huang, P.-S.; Welbl, J.; Gowal, S.; Cherepanov, A.; Molloy, J.; Mankowitz, D. J.; Sutherland Robson, E.; Kohli, P.; de Freitas, N.; Kavukcuoglu, K.; Vinyals, O. Competition-Level Code Generation with AlphaCode. Science 2022, 378 (6624), 1092–1097. https://doi.org/10.1126/science.abq1158.
  230. Nistanaki, S. K.; Williams, C. G.; Wigman, B.; Wong, J. J.; Haas, B. C.; Popov, S.; Werth, J.; Sigman, M. S.; Houk, K. N.; Nelson, H. M. Catalytic Asymmetric C–H Insertion Reactions of Vinyl Carbocations. Science 2022, 378 (6624), 1085–1091. https://doi.org/10.1126/science.ade5320.
  231. Schindler, E. A. D.; D’Souza, D. C. The Therapeutic Potential of Psychedelics. Science 2022, 378 (6624), 1051–1053. https://doi.org/10.1126/science.abn5486.
  232. Vignieri, S.; Sills, J.; Mervis, J.; Ash, C.; Lavine, M. S.; Scanlon, S. T.; Nusinovich, Y.; Funk, M. A.; Hines, P. J.; Thompson, V.; Engel, M.; Cho, A.; Arbour, V. New Books for Young Scientists. Science 2022, 378 (6624), 1044–1050. https://doi.org/10.1126/science.adf7725.
  233. Beckers, M.; Fechner, N.; Stiefl, N. 25 Years of Small-Molecule Optimization at Novartis: A Retrospective Analysis of Chemical Series Evolution. J. Chem. Inf. Model. 2022, 62 (23), 6002–6021. https://doi.org/10.1021/acs.jcim.2c00785.
  234. Bowker, M.; DeBeer, S.; Dummer, N. F.; Hutchings, G. J.; Scheffler, M.; Schüth, F.; Taylor, S. H.; Tüysüz, H. Advancing Critical Chemical Processes for a Sustainable Future: Challenges for Industry and the Max Planck–Cardiff Centre on the Fundamentals of Heterogeneous Catalysis (FUNCAT). Angew Chem Int Ed 2022, 61 (50). https://doi.org/10.1002/anie.202209016.
  235. D’Amore, L.; Hahn, D. F.; Dotson, D. L.; Horton, J. T.; Anwar, J.; Craig, I.; Fox, T.; Gobbi, A.; Lakkaraju, S. K.; Lucas, X.; Meier, K.; Mobley, D. L.; Narayanan, A.; Schindler, C. E. M.; Swope, W. C.; in ’t Veld, P. J.; Wagner, J.; Xue, B.; Tresadern, G. Collaborative Assessment of Molecular Geometries and Energies from the Open Force Field. J. Chem. Inf. Model. 2022, 62 (23), 6094–6104. https://doi.org/10.1021/acs.jcim.2c01185.
  236. Lukauskis, D.; Samways, M. L.; Aureli, S.; Cossins, B. P.; Taylor, R. D.; Gervasio, F. L. Open Binding Pose Metadynamics: An Effective Approach for the Ranking of Protein–Ligand Binding Poses. J. Chem. Inf. Model. 2022, 62 (23), 6209–6216. https://doi.org/10.1021/acs.jcim.2c01142.
  237. Młodzikowska-Pieńko, K.; Trzaskowski, B. Decomposition of Ruthenium Metathesis Catalysts: Unsymmetrical N -Heterocyclic Carbenes versus Cyclic Alkyl Amino Carbenes. Organometallics 2022, 41 (23), 3627–3635. https://doi.org/10.1021/acs.organomet.2c00432.
  238. Rajeshwaran, P.; Trouvé, J.; Youssef, K.; Gramage‐Doria, R. Sustainable Wacker‐Type Oxidations. Angew Chem Int Ed 2022, 61 (50). https://doi.org/10.1002/anie.202211016.
  239. Rosenthal, U. How Serendipity and Chance Can Be Transformed into Knowledge: Examples from 50 Years of Research in Organometallic Chemistry and Homogeneous Catalysis. Organometallics 2022, 41 (23), 3478–3492. https://doi.org/10.1021/acs.organomet.2c00517.
  240. Tan, Y.; Dai, L.; Huang, W.; Guo, Y.; Zheng, S.; Lei, J.; Chen, H.; Yang, Y. DRlinker: Deep Reinforcement Learning for Optimization in Fragment Linking Design. J. Chem. Inf. Model. 2022, 62 (23), 5907–5917. https://doi.org/10.1021/acs.jcim.2c00982.
  241. Zhao, X.; Sun, Y.; Zhang, R.; Chen, Z.; Hua, Y.; Zhang, P.; Guo, H.; Cui, X.; Huang, X.; Li, X. Machine Learning Modeling and Insights into the Structural Characteristics of Drug-Induced Neurotoxicity. J. Chem. Inf. Model. 2022, 62 (23), 6035–6045. https://doi.org/10.1021/acs.jcim.2c01131.
  242. Mudrak, B.; Bosshart, S.; Koch, W.; Leung, A.; Minton, D.; Sawamoto, M.; Tegen, S. Five Years of ChemRxiv: Where We Are and Where We Go from Here. J. Am. Chem. Soc. 2022, 144 (49), 22333–22335. https://doi.org/10.1021/jacs.2c11417.
  243. Zahrt, A. F.; Mo, Y.; Nandiwale, K. Y.; Shprints, R.; Heid, E.; Jensen, K. F. Machine-Learning-Guided Discovery of Electrochemical Reactions. J. Am. Chem. Soc. 2022, 144 (49), 22599–22610. https://doi.org/10.1021/jacs.2c08997.
  244. Ashworth, M. A.; Bombino, E.; de Jong, R. M.; Wijma, H. J.; Janssen, D. B.; McLean, K. J.; Munro, A. W. Computation-Aided Engineering of Cytochrome P450 for the Production of Pravastatin. ACS Catal. 2022, 12 (24), 15028–15044. https://doi.org/10.1021/acscatal.2c03974.
  245. Nguyen, J. The Model, the Modeler, and the Truth Escape from Model Land Erica Thompson Basic Books, 2022. 256 Pp.. Science 2022, 378 (6625), 1179–1179. https://doi.org/10.1126/science.ade9573.
  246. Samha, M. H.; Wahlman, J. L. H.; Read, J. A.; Werth, J.; Jacobsen, E. N.; Sigman, M. S. Exploring Structure–Function Relationships of Aryl Pyrrolidine-Based Hydrogen-Bond Donors in Asymmetric Catalysis Using Data-Driven Techniques. ACS Catal. 2022, 12 (24), 14836–14845. https://doi.org/10.1021/acscatal.2c04824.
  247. Herres‐Pawlis, S.; Bach, F.; Bruno, I. J.; Chalk, S. J.; Jung, N.; Liermann, J. C.; McEwen, L. R.; Neumann, S.; Steinbeck, C.; Razum, M.; Koepler, O. Minimum Information Standards in Chemistry: A Call for Better Research Data Management Practices. Angew Chem Int Ed 2022, 61 (51). https://doi.org/10.1002/anie.202203038.
  248. Humblot, A.; Chave, T.; Amaniampong, P. N.; Streiff, S.; Jérôme, F. Inside Back Cover: Sonochemically‐Induced Reduction of Alkenes to Alkanes with Ammonia (Angew. Chem. Int. Ed. 51/2022). Angew Chem Int Ed 2022, 61 (51). https://doi.org/10.1002/anie.202217292.
  249. Hu, Y.; Lee, C. C.; Grosch, M.; Solomon, J. B.; Weigand, W.; Ribbe, M. W. Enzymatic Fischer–Tropsch-Type Reactions. Chem. Rev. 2022, acs.chemrev.2c00612. https://doi.org/10.1021/acs.chemrev.2c00612.
  250. Lilley, D.; Prasher, R. Ionocaloric Refrigeration Cycle. Science 2022, 378 (6626), 1344–1348. https://doi.org/10.1126/science.ade1696.
  251. Shen, L.; Zheng, Y.; Lin, Z.; Qin, T.; Huang, Z.; Zi, W. Copper‐Catalyzed Enantioselective C1,N‐Dipolar (3 + 2) Cycloadditions of 2‐Aminoallyl Cations with Indoles. Angew Chem Int Ed 2022, anie.202217051. https://doi.org/10.1002/anie.202217051.
  252. Woolfson, A. Making Modern Medicines For Blood and Money; Billionaires, Biotech, and the Quest for a Blockbuster Drug Nathan Vardi Norton, 2023. 288 Pp.. Science 2022, 378 (6626), 1283–1283. https://doi.org/10.1126/science.ade4644.
  253. Cicolella, A.; Romano, E.; Barone, V.; De Rosa, C.; Talarico, G. Metallocenes and Beyond for Propene Polymerization: Energy Decomposition of Density Functional Computations Unravels the Different Interplay of Stereoelectronic Effects. Organometallics 2022, 41 (24), 3872–3883. https://doi.org/10.1021/acs.organomet.2c00534.
  254. Mottin, M.; de Paula Sousa, B. K.; de Moraes Roso Mesquita, N. C.; de Oliveira, K. I. Z.; Noske, G. D.; Sartori, G. R.; de Oliveira Albuquerque, A.; Urbina, F.; Puhl, A. C.; Moreira-Filho, J. T.; Souza, G. E.; Guido, R. V. C.; Muratov, E.; Neves, B. J.; Martins da Silva, J. H.; Clark, A. E.; Siqueira-Neto, J. L.; Perryman, A. L.; Oliva, G.; Ekins, S.; Andrade, C. H. Discovery of New Zika Protease and Polymerase Inhibitors through the Open Science Collaboration Project OpenZika. J. Chem. Inf. Model. 2022, 62 (24), 6825–6843. https://doi.org/10.1021/acs.jcim.2c00596.
  255. Pierce, J. K.; Hiatt, L. D.; Howard, J. R.; Hu, H.; Qu, F.; Shaughnessy, K. H. Amines as Activating Ligands for Phosphine Palladium(II) Precatalysts: Effect of Amine Ligand Identity on the Catalyst Efficiency. Organometallics 2022, 41 (24), 3861–3871. https://doi.org/10.1021/acs.organomet.2c00518.
  256. Schulz, J.; Clauss, R.; Kazimir, A.; Holzknecht, S.; Hey-Hawkins, E. On the Edge of the Known: Extremely Electron‐rich (Di)Carboranyl Phosphines. Angew Chem Int Ed 2022, anie.202218648. https://doi.org/10.1002/anie.202218648.
  257. Yadav, S.; Kardam, V.; Tripathi, A.; T G, S.; Dubey, K. D. The Performance of Different Water Models on the Structure and Function of Cytochrome P450 Enzymes. J. Chem. Inf. Model. 2022, 62 (24), 6679–6690. https://doi.org/10.1021/acs.jcim.2c00505.
  258. Cavasotto, C. N.; Scardino, V. Machine Learning Toxicity Prediction: Latest Advances by Toxicity End Point. ACS Omega 2022, 7 (51), 47536–47546. https://doi.org/10.1021/acsomega.2c05693.
  259. Lebon, J.; Mortis, A.; Maichle‐Mössmer, C.; Manßen, M.; Sirsch, P.; Anwander, R. Schlenk’s Legacy—Methyllithium Put under Close Scrutiny. Angew Chem Int Ed 2022. https://doi.org/10.1002/anie.202214599.
  260. Maskeri, M. A.; Fernandes, A. J.; Di Mauro, G.; Maulide, N.; Houk, K. N. Taming Keteniminium Reactivity by Steering Reaction Pathways: Computational Predictions and Experimental Validations. J. Am. Chem. Soc. 2022, 144 (51), 23358–23367. https://doi.org/10.1021/jacs.2c09146.